

TRAVAIL D'ETE pour bien démarrer en Classe de Première

SOMMAIRE

Pour démarrer les révisions en jouant

SUDOKU avec calcul littéral p.2

SUDOKU avec fonctions p.3

SUDOKU avec systèmes d'équations p.4

SUDOKU avec pourcentages et fonctions p.5 - 6

Il Pour réviser les notions importantes avant la rentrée

Exercices 1 - 2 : résolutions d'équations et inéquations p.7

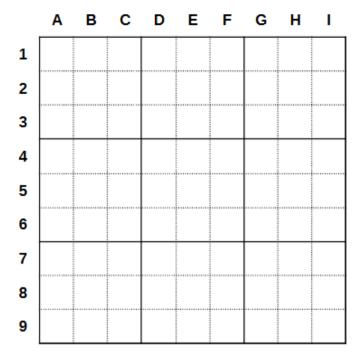
Exercices 3 -4 - 5 : calcul littéral p.7 -8

Exercices 6 : sens de variation des fonctions de référence p.8

Exercice 7: position de deux courbes p.8

Exercice 8 : repérage et systèmes d'équations p.8

III Quelques questions Kwyk

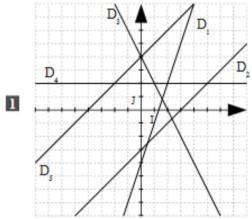

Notion d'intervalles p.9

Notion d'équations de droites p.9 – 10

Pour démarrer les révisions en jouant

SUDOKU avec CALCUL LITTERAL

Dans les cellules B7 et A4, noter la valeur de $-x^2+13$ pour x=-2 Dans les cellules B2 et C6, noter la valeur de 2x-6 pour x=5 Dans les cellules A5 et I6, noter la valeur de -2x+3 pour x=-1 Dans la cellule D8, noter la valeur de $2x^2-3x-33$ pour x=5 Dans la cellule C5, noter la valeur de -6x-40 pour x=-8 Dans les cellules A6 et H8 noter la valeur de x^4-10 pour x=2 Dans la cellule F5 noter la valeur de (3x-8)(x+1) pour x=3 Dans les cellules D7 et I4, noter la valeur de (x-3)(3x-9) pour x=4 Dans les cellules H2 et D4, noter la valeur de x^2-2x-3 pour x=-2 Dans les cellules C2, G5 et I7, noter la valeur de l'aire du triangle pour x=2


Dans la cellule F7, noter la valeur de (x-1)(x+1) pour x=3 Dans les cellules E2 et H9, noter la valeur de (2x-5)(7-x) pour x=4 Dans les cellules H1, B4 et F6 noter la valeur de x^2+4x+2 pour x=1 Dans la cellule B9 noter la valeur de $4x^2-3$ pour x=-1 Dans les cellules C8 et H3, noter la valeur de $2x^2-3x+1$ pour x=2 Dans les cellules A3, C9 et G4 noter la valeur de x^3+3 pour x=-1 Dans les cellules G1 et H6 noter la valeur de x^3+3 pour x=2 Dans les cellules F2 et E5, noter la valeur de x^3+3 pour x=10 Dans les cellules D1 et E8 noter la valeur de x^2-5 pour x=-3 Dans les cellules I5 et D3 noter la valeur de x^3+3 pour x=-4 Dans la cellule G8 noter la valeur de x^3+3 pour x=-4

SUDOKU avec FONCTIONS et EQUATIONS DE DROITES

Dans ce Sudoku, les chiffres de 1 à 9 ont été remplacés par les nombres entiers de -4 à 4. Chacun doit être présent une et une seule fois sur les lignes, les colonnes et les régions. Les régions sont les 9 carrés de 3×3 cases.

	a	b	С	d	е	f	g	h	i
Α	-4				-1				
В									
С							-1		
D		3							
E				-4					4
F									
G								-4	
Н						1			
Ι			0						

Pour chaque droite, déterminer le coefficient directeur et l'ordonnée à l'origine et les placer dans la grille en utilisant le tableau suivant :

	Di	D ₂	D ₃	D ₄	D₅
coefficient directeur	Gf	Bi	Af	Ch	Fe
ordonnée à l'origine	If	Ai	Cd	Вс	Ge

- Soit g la fonction qui à x associe $\frac{x+1}{x-2}$.
- Placer la valeur pour laquelle g n'est pas définie en Hi.
- b. Placer l'image de 1 en Ga, g(3) en Df, g(-1) en Fd, l'image de 5 en Ef et g(0,5) en Ff.
- c. Placer l'antécédent de 0 en Id et l'antécédent de $\frac{1}{4}$ en Ii.

- Mettre (x-2)(2x+1) sous la forme ax^2+bx+c . Placer a en Ag, b en Fh et c en Ec.
- Résoudre le système : $\begin{cases} x+y=6\\ 2x-3y=-8 \end{cases}$. Placer la valeur de x en Ce et la valeur de y en Fb.
- Soit d₁ la droite d'équation y=x+1 et d₂ la droite d'équation y=2x+4. Soit A le point d'intersection des deux droites. Placer l'abscisse de A en Ba et l'ordonnée de A en Cb.
- 6 Soit f la fonction qui à x associe $x^2 + x 2$.
 - Placer l'image de 2 en Bg et f(1) en Da.
 - b. -2 a deux antécédents par f. Placer le plus petit en Hh et le plus grand en Eg.
- 7 On considère la série de valeurs suivante :

Placer le 1^{er} quartile en Ci, la médiane en Gc, le troisième quartile en Fi et la moyenne en Ea.

- Placer le minimum de la fonction qui à x associe x²-6x+13 en Ac et la valeur pour laquelle il est atteint en Ee.
- Mettre l'expression $\frac{x}{x-1} \frac{3}{2}$ sous la forme $\frac{ax+b}{cx+d}$ Placer a en Bb, b en Ia, c en Gd et d en Fg.

SUDOKU avec EQUATIONS DE DROITES et SYSTEMES D'EQUATIONS

	x_1		x_3		y_3		x_4	
	y_1	y_2		x_4		x_1	<i>x</i> ₅	
Coefficient directeur de $y = 3 + 5x$								y_5
		x_6^2	$y_2 - 1$			Le cube de 2		
$\frac{y_1}{2}$	<i>x</i> ₆						<i>y</i> ₇	
		x_1	$2y_4$		Coefficient directeur de (AB)	$\frac{x_D}{3}$		
x_S		√25						x_T
	x_D	<i>x</i> ₇		$\frac{x_7}{8}$		x_2	$\frac{4}{7}x_1$	
	Le double du coefficient directeur de (CD)		x_1		y_T		3 <i>y</i> ₄	

Réponses

$$\begin{cases} y_1 = 2 \\ y_1 = -\frac{1}{2}x_1 + \frac{11}{2} \\ y_2 = x_2 \\ x_2 = 6 \end{cases}$$

$$\begin{cases} y_2 = x_2 \\ x_2 = 6 \end{cases}$$

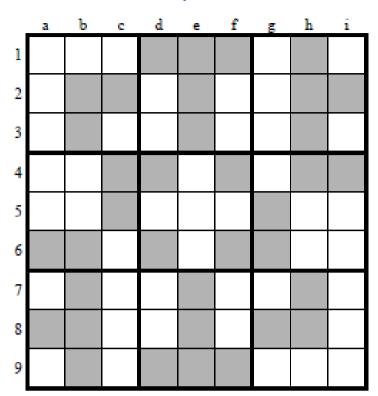
$$\begin{cases} y_3 = \frac{1}{2}x_3 + 6 \\ y_3 = x_3 + 3 \end{cases}$$

$$\begin{cases} y_4 = x_4 - 7 \\ y_4 = -x_4 + 9 \end{cases}$$

$$\begin{cases} y_5 = 3x_5 + 3 \\ y_5 = 2x_5 + 4 \end{cases}$$

$$\begin{cases} y_6 = 7 \\ y_6 = \frac{-1}{3}x_6 + 8 \end{cases}$$

$$\begin{cases} y_7 = 5 \\ x_7 = 8 \end{cases}$$


$$A(-3;7) \ et \ B(-8;2)$$

$$C(5;3) \ et \ D(9;5)$$
T milieu de [CD]

S milieu de [AD]

SUDOKU avec FONCTIONS, POURCENTAGES et EQUATIONS DE DROITES

d1 : Pourcentage d'augmentation d'un objet qui passe de 127 € à 138,43 €.

e1 : Image du nombre 2 par la fonction f définie sur P par $f(x) = 4x^2 + 2x - 13$.

f1 : Pourcentage de baisse d'un article qui passe de 147 € à 145,53 €.

h1 : Coefficient directeur de la droite (AB) lorsque A(-2; -4) et B(1; 20).

b2 : Un article à 125 € a vu son prix baisser de 0,8%. De combien d'euros a-t-il diminué?

c2 : Ordonnée à l'origine de la droite (AB) lorsque A(2;3) et B(-3;13).

e2 : Abscisse du point d'ordonnée $\frac{-7}{5}$ appartenant à (AB) lorsque A(5; -2) et B(0; 1).

h2 : Combien coûte un objet de 20 € après une baisse de 70% ?

i2 : Ordonnée du point d'abscisse -7 appartenant à (AB) lorsque A(7;1) et B(0;3).

b3 : Combien coûtait un article qui, après une hausse de 140%, coûte 7,2 €?

e3 : Abscisse du point d'intersection des deux droites Δ et Δ' d'équations cartésiennes respectives :

$$\Delta: x - 2y - 11 = 0$$
 et $\Delta': 3x + y - 12 = 0$.

h3 : Ordonnée du point d'intersection des deux droites Δ et Δ' d'équations réduites respectives:

$$\Delta: y = -\frac{1}{2}x + \frac{7}{2}$$
 et $\Delta': y = \frac{2}{5}x - 1$

c4 : Valeur initiale d'un objet qui, après une baisse de 30%, coûte 6,30 €.

d4 : Valeur de p pour que la droite d'équation $y = \frac{2}{3}x + p$ passe par le point A(-6; -3).

f4 : Pourcentage de baisse d'un article qui est passé de 1425 € à 1368 €.

h4 : Valeur de m pour que la droite d'équation y = mx + 7 passe par le point A(1; 12).

i4 : Antécédent du nombre 44 par la fonction affine définie sur P par f(x) = 7x + 2

c5 : De combien a baissé un objet de 120 € après une baisse de 5% ?

g5 : Ordonnée à l'origine d'une droite qui passe par le point de coordonnées $\left(1; \frac{12}{7}\right)$ et qui a pour coefficient directeur $\frac{-2}{7}$.

a6 : Pourcentage d'augmentation d'un article passant de 228 € à 232,56 €.

b6 : Ordonnée à l'origine de la droite (AB) lorsque A(3;2) et $B\left(1;\frac{10}{3}\right)$.

d6 : De quelle valeur a augmenté un prix de 250 € lorsqu'il augmente de 2% ?

f6 : Abscisse du point d'intersection des droites (AB) et (CD) lorsque A(0;-4), $B\left(1;\frac{-11}{3}\right)$, C(0;7), D(2;4).

g6 : Combien coûtait un article qui après une hausse de 200% coûte 9 €?

b7 : Antécédent de -3,3 par la fonction affine sur P par $f(x) = \frac{-2}{5}x + \frac{3}{10}$.

e7 : Combien coûtait un objet qui après une baisse de 2% coûte 5,88 €?

h7 : Image du nombre $\sqrt{\frac{7}{5}}$ par la fonction définie sur]1; $+\infty$ [par $f(x) = \frac{x^2+1}{2x^2-2}$.

a8 : Ordonnée du point d'abscisse $\frac{-1}{7}$ qui appartient à la droite d'équation y=-7x+3.

b8 : Combien coûtait un objet qui, après une hausse de 12%, coûte 6,72 €?

e8 : Abscisse du point d'ordonnée $\frac{11}{3}$ qui appartient à la droite d'équation $y = \frac{5}{3}x + 2$.

g8 : Coefficient directeur d'une droite qui a pour ordonnée à l'origine 2 et qui passe par le point A(2; 12).

h8 : Coefficient directeur de la droite Δ' parallèle à la droite Δ d'équation réduite : 14x - 2y + 5 = 0.

b9 : De quelle valeur diminuera un prix de 20 € s'il baisse de 25% ?

d9 : Valeur d'un objet de 6,25 € après une hausse de 12%.

e9 : Ordonnée du point d'intersection des deux droites Δ et Δ' d'équations réduites respectives:

$$\Delta: y = -\frac{1}{3}x + 2$$
 et $\Delta': y = \frac{5}{2}x + \frac{21}{2}$

f9 : Combien coûte un objet de 12,5 € après une baisse de 28% ?

Il Pour réviser les notions importantes avant la rentrée

Résolutions d'équations et inéquations

Exercice 1 Résoudre une équation

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse en justifiant la réponse.

- 1) L'équation 2x 1 = -3(x 2) admet pour solution un nombre rationnel positif.
- 2) L'équation (2x + 9)(4x 1) = 0 admet pour unique solution le nombre $\frac{1}{4}$.
- 3) L'ensemble S des solutions de l'équation $x^2 6 = 0$ est $S = \{\sqrt{6}\}$.
- 4) L'équation $x^2 + 1 = 0$ n'admet aucune solution réelle.
- 5) Les nombres 3 et 2 sont solutions de l'équation $x^2 + x 6 = 0$.

Exercice 2 Résolution d'équations et d'inéquations

1)
$$2-6x=0$$
; $3x+1=0$; $-4x-5=0$; $(3x-9)(-x-4)=0$; $\frac{7x-6}{-x+2}=0$; $\frac{x+4}{5x-2}=3$.

2)
$$4x - 7 < 0$$
; $9x + 7 > 0$; $-2x - 3 \le 0$; $1 - 7x \ge 0$.

3)
$$(2x-3)(-x+6) \ge 0$$
; $\frac{-3x+1}{x+2} \le 0$; $\frac{x+1}{4x-1} \le 1$.

Exercice 3 Maîtriser les identités remarquables

Compléter les égalités suivantes de sorte qu'elles soient vérifiées pour tout nombre réel x.

1)
$$(\dots +1)^2 = x^2 + \dots + \dots$$

2)
$$(2x - \cdots)^2 = \cdots + 16$$

3)
$$(x - \cdots)^2 = x^2 - 14x + \cdots$$

3)
$$(x - \dots)^2 = x^2 - 14x + \dots$$
 4) $(\dots + \sqrt{7})(\dots - \sqrt{7}) = x^2 - \dots$

5) +
$$\cdots$$
 .. + $\frac{1}{4}$ = $(3x + \cdots)^2$

5) +
$$\cdots$$
 ... + $\frac{1}{4}$ = $(3x + \cdots)^2$ 6) $(3 - \cdots)(3 + \cdots) = \cdots -100x^2$.

Calcul littéral

Exercice 4 Développer – Factoriser

Pour chacune des questions suivantes, indiquer la bonne réponse

- 1) Une expression factorisée de $x^2 + 9x 10$ est :
- a) x(x+9)-10 b) (x-1)(x+10) c) (x+1)(x-10)
- 2) Une expression développée de (2x + 1)(-3x 4) est :
 - a) 5x 3
- b) $-6x^2 5x 4$ c) $-6x^2 11x 4$
- 3) Une expression factorisée de $x^2 (5x + 8)^2$ est :
- a) (6x+8)(4x-8) b) (6x+8)(4x+8) c) $-24x^2-80x-64$
- 4) Une expression développée de $3(x+1)^2 3$ est :
 - a) $3x^2 + 3x$
- b) $3x^2 + 6x$

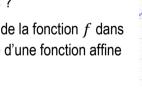
- c) 3x(x+2)
- 5) Une expression égale à $6\left(-x-\frac{5}{6}\right)(x+1)$ est :
 - a) $3x^2 + 3x$
- b) $3x^2 + 6x$

c) 3x(x+2)

Exercice 5 Factorisations et développements

- 1) Développer puis réduire : $A = (3x 5)(x + 1) (x + 1)^2$.
- 2) Factoriser $A = (3x 5)(x + 1) (x + 1)^2$.
- 3) Factoriser les expressions suivantes : $B = x^2 49$; $C = x^2 8x + 16$; $D = x^2 5x$.
- 4) Montrer que pour tout réel x, on a : $(4x 1)^2 2x^2 = 14x^2 8x + 1$..
- 5) Montrer que pour tout réel x, on a : $(2x-3)^2 (5x+1)^2 = (7x-2)(-3x-4)$.

Sens de variation des fonctions de référence


Exercice 6 Comparer des images

- a) Si $a \le b \le -1$, comparer a^2 et b^2 en justifiant.
- b) Si $a \le b \le -1$, comparer $\frac{1}{a}$ et $\frac{1}{b}$ en justifiant.
- c) Si $a \ge b \ge 2$, comparer $\frac{1}{a}$ et $\frac{1}{b}$ en justifiant.
- d) Si $a \ge b \ge 2$, comparer a^3 et b^3 en justifiant.
- e) Si a > b > 4 , comparer \sqrt{a} et \sqrt{b} en justifiant.

Exercice 7 Différentes formes d'une même expression et leur utilité

On considère la fonction f définie sur \mathbb{R} par $f(x) = (2x-3)^2 - 25$.

- 1) Déterminer la forme développée de f(x).
- 2) Déterminer la forme factorisée de f(x).
- 3) Quelle forme de f(x) utiliser pour répondre aux questions suivantes :
 - a) Calculer l'image de 0 par f. Combien vaut-elle ?
 - b) Déterminer les antécédents de 0 par f. Quels sont-ils ?
- 4) Lectures graphiques : on a tracé la courbe représentative de la fonction f dans un repère. On a aussi tracé une droite (AB) représentative d'une fonction affine notée g définie sur \mathbb{R} .

- a) Dresser le tableau de variation de la fonction f sur \mathbb{R} .
- b) Résoudre graphiquement l'équation : f(x) = g(x) puis l'inéquation f(x) < g(x).
- c) Lire le coefficient directeur de la droite (AB) puis déterminer par le calcul son ordonnée à l'origine. Déterminer l'expression de la fonction g.
- 5) Par le calcul, retrouver les résultats des questions 4b) et 4)c)

Exercice 8 Dans un repère orthonormé, on considère les points F(-2;-3), L(3;2) et G(6;-1).

- 1) Faire une figure.
- 2) Calculer les coordonnées du vecteur \overrightarrow{LG} puis la distance LG.
- 3) Soit M un point de l'axe des abscisses. Déterminer la valeur de son abscisse pour que les vecteurs \overrightarrow{LG} et \overrightarrow{MF} soient colinéaires.
- 4) Déterminer l'équation réduite de la droite (GF).
- 5) Tracer la droite Δ d'équation cartésienne : 4x y 10 = 0 et expliquer la méthode utilisée.
- 6) Lire les coordonnées du point d'intersection des droites (GF) et Δ .
- 7) Résoudre par le calcul le système suivant :

$$\begin{cases} \frac{1}{4}x - y = \frac{5}{2} \\ 4x - y = 10 \end{cases}$$
. Que retrouve-t-on ? Est-ce normal ?

III Quelques questions Kwyk

Notion d'intervalles

N°26009 : Ecrire l'intervalle correspondant à l'inégalité/l'encadrement proposé

Soit x un nombre réel tel que -5 < x < 1. Ecris l'intervalle auquel appartient x.

N°26011 : Ecrire l'inégalité/l'encadrement correspondant à la coloration sur un axe gradué

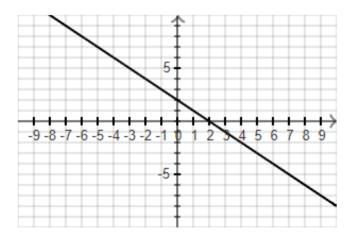
Soit x un nombre appartenant à un intervalle représenté en bleu ci-dessous.

Ecris l'inégalité ou l'encadrement de x correspondant.

N°26000 : Union de deux intervalles - bornes entières

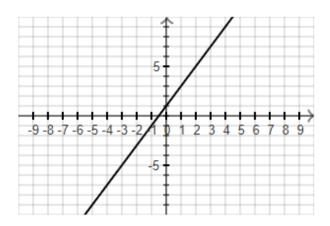
Donner l'union de]6;18[et [-26;4[.

On écrira le résultat sous la forme d'un intervalle ou d'une réunion d'intervalles.


N°26001 : Intersection de deux intervalles - bornes entières

Donner l'intersection de [-30; 3[et \emptyset . On écrira le résultat sous la forme d'un intervalle.

Notions d'équations de droites


N°1614: Trouver le coefficient directeur d'une droite (graphique)

Déterminer le coefficient directeur de la droite suivante :

N°1615 : Trouver l'ordonnée à l'origine d'une droite (graphique)

Déterminer l'ordonnée à l'origine de la droite suivante :

N°1631: Est-ce que le point (x, y) appartient à la courbe ? (fonction affine)

Parmi les points suivants, lesquels appartiennent à la courbe d'équation y = -3x - 5 ?

$$A(2;-11)$$

$$B(-2;1)$$

$$C(4; -17)$$

$$D(4; -12)$$

- , A
- , B
- , *C*
- , D

N°20007: Trouver l'équation de droite avec 2 points

Soit A(-9; 6) et B(7; -9). Donner une équation réduite puis une équation cartésienne de la droite (AB).

Bravo pour ton travail! Mmes BIRON - FERHANE - MARECHAL - RICHARD