BILAN fin de 1ère: Suites

Exercices pour les élèves ayant choisi EDS math

Exercice 1

La suite (u_n) est définie pour tout entier naturel n par $u_n = \sqrt{n} + 5$

La suite (v_n) est définie par $v_0=16$ et pour tout entier naturel n par $v_{n+1}=\sqrt{v_n}+5$

- 1. Calculer à la main u_0 , u_1 , v_1 et v_2
- 2. Déterminer, à l'aide d'un tableur ou de la calculatrice, les dix premiers termes de chacune des deux suites.
- 3. Ecrire un algorithme en langage naturel qui permet de calculer le terme de rang n de la suite (v_n) .

Exercice 2

On considère la suite (u_n) définie par $u_0=1$ et pour tout $n\geq 0$ par $u_{n+1}=u_n+2n-3$

- 1. Montrer que $u_3 = -2$
- 2. Démontrer que cette suite est croissante à partir d'un rang que l'on précisera.

Exercice 3

Déterminer le sens de variation de chacune des suites (u_n) définies ci-dessous :

- 1. Pour tout entier naturel n, $u_n = 0.2n^2 + n 3$
- 2. Pour tout entier naturel n, $u_n = \frac{3}{n+1}$
- 3. Pour tout entier naturel n, $u_n = \frac{n}{n+1}$
- 4. $u_0 = 0$ et pour tout entier naturel n, $u_{n+1} = u_n 2n 5$
- 5. $u_0 = -5$ et pour tout entier naturel n, $u_{n+1} = u_n + n^2$

Exercice 4

On considère la suite (u_n) définie par la fonction Python ci-contre :

- 1. Donner les quatre premiers termes de la suite (u_n) .
- 2. Donner la relation de récurrence vérifiée par la suite (u_n) .

Exercice 6

- 1. On considère la suite arithmétique (u_n) de premier terme $u_0 = 48$ et de raison -5.
 - a. Donner la relation de récurrence vérifiée par (u_n) , puis la formule explicite de (u_n) .
 - b. Calculer u_5 .
 - c. Déterminer le sens de variation de la suite (u_n) .
- 2. Reprendre la question 1. en considérant cette fois la suite géométrique (v_n) de premier terme $v_1=-2$ et de raison 3.

Exercice 7

On considère la suite (u_n) définie par $u_0=6$ et pour tout entier naturel n, $u_{n+1}=-2u_n+3$

- 1. a. Calculer u_1 , u_2 et u_3
 - b. La suite (u_n) est-elle arithmétique ? géométrique ?
- 2. On pose, pour tout entier naturel n, $v_n=u_n-1$ Démontrer que la suite (v_n) est géométrique de raison -2. En déduire, pour tout entier naturel n, l'expression de v_n en fonction de n, puis celle de u_n en fonction de n.

Exercice 8

Une entreprise décide de verser à ses ingénieurs une prime annuelle de 500 euros.

Pour ne pas se dévaluer, il est prévu que chaque année la prime augmente de 2% par rapport à l'année précédente.

On note (u_n) la suite des primes avec $u_1 = 500$.

- 1. Calculer u_2 puis u_3 (c'est-à-dire la prime versée par l'entreprise la $2^{\text{ème}}$ année et la $3^{\text{ème}}$ année).
- 2. Exprimer u_{n+1} en fonction de u_n . En déduire la nature de la suite (u_n) .
- 3. Un ingénieur compte rester 20 ans dans cette entreprise à partir du moment où est versée la prime.
- a. Calculer la prime qu'il touchera la 20^{ème} année.
- b. Calculer la somme totale *S* des primes touchées sur les 20 années.

Exercice 9

Pour chacune des affirmations proposées, indiquer si elle est vraie ou fausse en justifiant votre réponse.

Soit la suite
$$(u_n)$$
 définie pour tout entier naturel n par : $\begin{cases} u_0 = 14 \\ u_{n+1} = 2u_n - 5 \end{cases}$

Soit la suite (t_n) définie pour tout entier naturel n par $t_n = u_n - 5$

Affirmation 1: La suite (t_n) est une suite géométrique.

Affirmation 2: Pour tout entier naturel n, $u_n = 9 \times 2^n + 5$.

L'affirmation qui suit est indépendante des deux précédentes.

Affirmation 3: Pour tout entier naturel n non nul,

$$(8 \times 1 + 3) + (8 \times 2 + 3) + \dots + (8 \times n + 3) = n(4n + 7)$$

Exercice 10

Soit la suite (u_n) définie par $u_0=2$ et pour tout entier naturel n par $u_{n+1}=2u_n+2n^2-n$.

Soit la suite (v_n) définie pour tout entier naturel n par $v_n = u_n + 2n^2 + 3n + 5$.

1. Voici un extrait de feuille de tableur ci-contre :

Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites (u_n) et (v_n) ?

2. Déterminer, en justifiant, une expression de v_n puis de u_n en fonction de n.

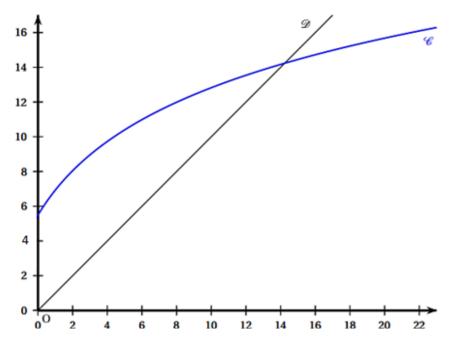
	Α	В	C
1	n	u	v
2	0	2	7
3	1	4	14
4	2	9	28
5	3	24	56
6	4	63	112
7	5	154	224

Exercice 11

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 4 \\ u_{n+1} = f(u_n) \ pour \ tout \ n \in \mathbb{N} \end{cases}$ avec f la fonction définie sur

l'intervalle $[0; +\infty[$ dont la courbe représentative (C) est représentée ci-dessous.

1. Construire sur l'axe des abscisses de la figure ci-dessous les termes u_0 , u_1 , u_2 et u_3 de la suite (u_n) en utilisant la droite d'équation y=x et la courbe (C) et en laissant apparaître les traits de construction.



2. Conjecturer le sens de variation et la limite de de la suite (u_n) .

Exercice 12

On considère la suite arithmétique (u_n) dont le terme de rang n s'obtient grâce à l'algorithme ci-contre.

- 1. a. Préciser le premier terme u_0 et la raison.
 - b. En déduire la formule explicite de u_n .
- 2. a. En résolvant une inéquation, déterminer le plus petit entier naturel n tel que $u_n \ge 1000$.
 - b. Modifier la fonction Python précédente pour qu'elle réponde à la question 2.a.

Exercice 13

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n par $u_{n+1} = \sqrt{2u_n}$.

- 1. Ecrire une fonction Python de paramètre n qui retourne sous forme de liste les n premiers termes de la suite (u_n) .
- 2. Emettre une conjecture sur la limite de la suite (u_n) .

Exercice 14

On doit à Fibonacci, mathématicien italien du XIIIe siècle le problème suivant.

« Un homme met un couple de lapins dans un lieu clos. Combien de couples obtient-on en un an si chaque couple engendre tous les mois un nouveau couple à compter du troisième mois de son existence ? »

On considère la suite (u_n) définie pour tout entier naturel n comme le nombre de couples présents le n-ième mois. On pose $u_0=0$, on a donc $u_1=1$ et, pour tout entier naturel n, $u_{n+2}=u_{n+1}+u_n$.

- 1. Compléter la fonction Python ci-contre pour retourner la liste des termes de la suite de u_0 à u_n .
- 2. Déterminer à l'aide de ce programme fibonacci(12). Que représente fibonacci(12) dans le contexte du problème posé par Fibonacci ?

```
def fibonacci(n):
a = 0; b = 1; L=[a]
for i in range (1,n+1):
    c = ...
    a = ...
    b = ...
    L.append(a)
return L
```

def suite(n):

for k in range(1,n+1):

u=u+4

return(u)

u = 10

2

4

5

Exercice 15

Les deux parties suivantes sont indépendantes.

Partie A. On considère la suite (v_n) définie par $v_0=1$ et $v_{n+1}=\frac{2}{3}v_n$ pour tout entier naturel n.

- 1. Quelle est la nature de la suite (v_n) ? En préciser les éléments caractéristiques.
- 2. Donner, pour tout entier naturel n, une expression de v_n en fonction de n.
- 3. Calculer la somme S des dix premiers termes de la suite (v_n) .

Partie B. On modélise une suite (w_n) à l'aide de la fonction suivante écrite en langage Python :

```
def terme(n):
w = 4
for i in range(n):
   w = 2*w - 3
return w
```

- 4. Que renvoie l'exécution de terme (5) ?
- 5. En s'inspirant de la fonction terme(n), proposer une fonction $somme_termes(n)$, écrite en langage Python, qui renvoie la somme des n premiers termes de la suite (w_n) .